The process of “translation” in protein synthesis involves formation of a peptide bond between two amino acids that are attached to two distinct transfer RNAs (tRNAs). For long, scientists have been puzzled as to how these tRNAs evolutionarily lie so close to each other on the ribosome. In a new study, researchers explain how tRNA-like components act as scaffolds for peptide bond formation between amino acid-bound “RNA minihelices,” which are half tRNA-like molecules.
The genetic information stored in DNA is “decoded” to form proteins via the process of translation. This involves the formation of peptide bonds between amino acids bound to transfer RNA (tRNA) molecules that glide over the ribosome in very close proximity to each other, and elongate the peptide chain, which later undergoes conformational change, forming a protein. In contrast to the codon-dependent aminoacyl-tRNA…