By engineering a short chunk of protein, or peptide, that can prevent the attachment of human parainfluenza viruses to cells, researchers have improved a method in rodent models intended to help keep children healthy.
Human parainfluenza viruses, or HPIVs, are the leading cause of childhood respiratory infections, responsible for 30% to 40% of illnesses like croup and pneumonia. The viruses also affect the elderly and people with compromised immune systems.
To sicken people, HPIVs must latch onto cells and inject their genetic material to start making new viruses. HPIV3 is the most prevalent among these viruses. There are currently no approved vaccines or antivirals for HPIV3 infection in people.
In a study led by the Sam Gellman lab in the chemistry department at the University of Wisconsin-Madison, and the lab of Anne Moscona and Matteo Porotto at Columbia University, researchers…