The transition from single-celled organisms to multicellular ones was a major step in the evolution of complex life forms. Multicellular organisms arose hundreds of millions of years ago, but the forces underlying this event remain mysterious. To investigate the origins of multicellularity, Erika Pearce’s group at the MPI of Immunobiology and Epigenetics in Freiburg turned to the slime mold Dictyostelium discoideum, which can exist in both a unicellular and a multicellular state, lying on the cusp of this key evolutionary step. These dramatically different states depend on just one thing — food.
A core question of Pearce’s lab is to answer how changes in metabolism drive cell function and differentiation. Usually, they study immune cells to answer this question, however, when first author Beth Kelly joined the group they decided to shift focus. “We figured that if we were interested…