Metals such as iron and calcium play a crucial role inside the human body, so it’s no surprise that bioengineers would like to integrate them into the soft, stretchy materials used to repair skin, blood vessels, lungs and other tissue.
Designing elastomers — a type of polymer with rubber-like properties — is a laborious process that yields a product with limited versatility. But Cornell engineers have developed a new framework that makes elastomer design a modular process, allowing for the mixing and matching of different metals with a single polymer.
The framework is detailed in “Chelation Crosslinking of Biodegradable Elastomers,” published Sept. 22 in Advanced Materials.
The framework was conceived when researchers from Cornell’s Biofoundry Lab sought to create an elastic vascular graft that could help repair heart tissue using copper. Yadong Wang, the McAdam Family Foundation…