Restoring normal sleep reduces amyloid-beta accumulation in mouse model of Alzheimer’s disease — ScienceDaily

Multiple studies in humans and mouse models indicate that sleep disruptions raise the risk of Alzheimer’s disease (AD) by increasing the accumulation of disease-relevant proteins such as amyloid-beta (A-beta) in the brain. In the current study, a team led by researchers at Baylor College of Medicine discovered that, in an animal model of Alzheimer’s disease, restoring normal sleep by returning to normal the activity of the thalamic reticular nucleus (TRN), a brain region involved in maintaining stable sleep, reduced the accumulation of A-beta plaques in the brain.

Published in the journal Science Translational Medicine, the study suggests that TRN not only may play a previously unsuspected driving role in symptoms associated with Alzheimer’s, but also that restoring its normal activity could be a potential therapeutic approach for this severe condition.

The TRN is quiet in AD

“Our…

Read more…